Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
Nat Commun ; 11(1): 3543, 2020 07 15.
Article in English | MEDLINE | ID: covidwho-974925

ABSTRACT

The sudden deterioration of patients with novel coronavirus disease 2019 (COVID-19) into critical illness is of major concern. It is imperative to identify these patients early. We show that a deep learning-based survival model can predict the risk of COVID-19 patients developing critical illness based on clinical characteristics at admission. We develop this model using a cohort of 1590 patients from 575 medical centers, with internal validation performance of concordance index 0.894 We further validate the model on three separate cohorts from Wuhan, Hubei and Guangdong provinces consisting of 1393 patients with concordance indexes of 0.890, 0.852 and 0.967 respectively. This model is used to create an online calculation tool designed for patient triage at admission to identify patients at risk of severe illness, ensuring that patients at greatest risk of severe illness receive appropriate care as early as possible and allow for effective allocation of health resources.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/pathology , Deep Learning/statistics & numerical data , Pneumonia, Viral/diagnosis , Pneumonia, Viral/pathology , Triage/methods , Betacoronavirus , COVID-19 , Critical Illness , Hospitalization , Humans , Middle Aged , Models, Theoretical , Pandemics , Prognosis , Risk , SARS-CoV-2 , Survival Analysis
3.
Sci Rep ; 10(1): 21122, 2020 12 03.
Article in English | MEDLINE | ID: covidwho-957580

ABSTRACT

The current outbreak of coronavirus disease 2019 (COVID-19) has recently been declared as a pandemic and spread over 200 countries and territories. Forecasting the long-term trend of the COVID-19 epidemic can help health authorities determine the transmission characteristics of the virus and take appropriate prevention and control strategies beforehand. Previous studies that solely applied traditional epidemic models or machine learning models were subject to underfitting or overfitting problems. We propose a new model named Dynamic-Susceptible-Exposed-Infective-Quarantined (D-SEIQ), by making appropriate modifications of the Susceptible-Exposed-Infective-Recovered (SEIR) model and integrating machine learning based parameter optimization under epidemiological rational constraints. We used the model to predict the long-term reported cumulative numbers of COVID-19 cases in China from January 27, 2020. We evaluated our model on officially reported confirmed cases from three different regions in China, and the results proved the effectiveness of our model in terms of simulating and predicting the trend of the COVID-19 outbreak. In China-Excluding-Hubei area within 7 days after the first public report, our model successfully and accurately predicted the long trend up to 40 days and the exact date of the outbreak peak. The predicted cumulative number (12,506) by March 10, 2020, was only 3·8% different from the actual number (13,005). The parameters obtained by our model proved the effectiveness of prevention and intervention strategies on epidemic control in China. The prediction results for five other countries suggested the external validity of our model. The integrated approach of epidemic and machine learning models could accurately forecast the long-term trend of the COVID-19 outbreak. The model parameters also provided insights into the analysis of COVID-19 transmission and the effectiveness of interventions in China.


Subject(s)
COVID-19/epidemiology , Pandemics/statistics & numerical data , China , Forecasting/methods , Humans , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL